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The present study proposes a classification model for the differential diagnosis of primary
insomnia (PI) and delayed sleep phase disorder (DSPD), applying machine learning
methods to circadian parameters obtained from ambulatory circadian monitoring (ACM).
Nineteen healthy controls and 242 patients (PI = 184; DSPD = 58) were selected
for a retrospective and non-interventional study from an anonymized Circadian Health
Database (https://kronowizard.um.es/). ACM records wrist temperature (T), motor
activity (A), body position (P), and environmental light exposure (L) rhythms during a
whole week. Sleep was inferred from the integrated variable TAP (from temperature,
activity, and position). Non-parametric analyses of TAP and estimated sleep yielded
indexes of interdaily stability (IS), intradaily variability (IV), relative amplitude (RA), and
a global circadian function index (CFI). Mid-sleep and mid-wake times were estimated
from the central time of TAP-L5 (five consecutive hours of lowest values) and TAP-
M10 (10 consecutive hours of maximum values), respectively. The most discriminative
parameters, determined by ANOVA, Chi-squared, and information gain criteria analysis,
were employed to build a decision tree, using machine learning. This model differentiated
between healthy controls, DSPD and three insomnia subgroups (compatible with
onset, maintenance and mild insomnia), with accuracy, sensitivity, and AUC >85%. In
conclusion, circadian parameters can be reliably and objectively used to discriminate
and characterize different sleep and circadian disorders, such as DSPD and OI, which
are commonly confounded, and between different subtypes of PI. Our findings highlight
the importance of considering circadian rhythm assessment in sleep medicine.

Keywords: circadian rhythms, wrist temperature, actigraphy, light exposure, insomnia, delayed sleep phase,
decision tree, digital health

Abbreviations: ACM, ambulatory circadian monitoring; AUC, area under curve; CFI, circadian function index; DSPD,
delayed sleep phase disorder; IS, interdaily stability; IV, intradaily variability; MI, maintenance insomnia; OI, onset insomnia;
PI, primary insomnia; RA, relative amplitude.
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INTRODUCTION

The study of circadian rhythms, especially when applicable
to clinical practice, has generated increasing interest over the
last few years (Sadeh and Acebo, 2002; Ancoli-Israel et al.,
2003). This is partially due to lifestyle changes in developed
societies that directly affect the quality of circadian rhythms,
with the subsequent impact on sleep (Shochat, 2012). As
reviewed by Goel et al. (2014), this so-called 24/7 society is
characterized by an increasing proportion of work and leisure
activities at night, exposure to light at aberrant times of the day,
growing use of technological devices, and social jetlag, i.e., a
circadian misalignment between free and work days (Roenneberg
et al., 2003). All these factors lead to desynchronization
between internal rhythms and the environmental day–night
cycle. Moreover, the use of light-emitting electronic devices
at night has been associated with delayed, reduced, and
fragmented sleep (Owens et al., 1999; Van Den Bulck, 2004;
Shochat et al., 2010).

In turn, sleep disorders usually lead to circadian disruption.
On the one hand, sleep timing and duration modulate exposure
to environmental cues that synchronize the circadian system
(e.g., environmental light, food schedules, social activities,
etc.). On the other hand, common symptoms of sleep
disorders such as sleep fragmentation or short sleep duration,
apart from contributing to excessive daytime sleepiness,
affect the amplitude of other rhythms (Martinez-Nicolas
et al., 2011) and alter the balance between homeostatic
and circadian processes involved in sleep–wake regulation
(Borbély et al., 2016).

This bidirectional relationship between sleep and circadian
alterations highlights why evaluating circadian rhythms is
also important for sleep medicine. In the current study,
we aimed to test the diagnostic usefulness of ACM, based
on wearable technology which combines the simultaneous
recording of several circadian output and input signals,
namely wrist temperature (T) (Sarabia et al., 2008), motor
activity (A), body position (P) (Sadeh and Acebo, 2002;
Ancoli-Israel et al., 2003), and exposure to environmental
light (L) rhythms. Actigraphy is accepted by the American
Academy of Sleep Medicine (AASM) as clinically appropriate
for studying sleep and circadian disorders, as it has been
used for >20 years (Sadeh and Acebo, 2002; Ancoli-Israel
et al., 2003). In addition, wrist temperature has been shown
as a reliable circadian marker (Sarabia et al., 2008; Martinez-
Nicolas et al., 2013), showing a close relationship with dim
light melatonin onset (Bonmatí-Carrión et al., 2014) and being
therefore proposed as a non-intrusive circadian marker of
choice in a consensus document (Mullington et al., 2016). Its
usefulness for diagnostic purposes has been also reported for
multiple conditions (Zornoza-Moreno et al., 2013; Martinez-
Nicolas et al., 2014, 2018). The variables T, A, and P
can be combined into the integrated variable TAP, which
indicates general activation and has been previously validated
for estimating sleep, showing greater reliability than any of
the individual variables by themselves according to both
sleep diaries (Ortiz-Tudela et al., 2010) and polysomnographic

assessment (Ortiz-Tudela et al., 2014). Recently, this method
has been successfully employed for chronotype identification
(Martinez-Nicolas et al., 2019). In the present study, the
usefulness of ACM as a diagnostic tool has mainly focused
on PI and DSPD, due to their high prevalence and the
overlapping of their symptoms (Gradisar and Crowley, 2013;
Sivertsen et al., 2013).

Insomnia may be both a symptom and a disorder. Briefly,
it implies difficulty for initiating or maintaining sleep, or
non-restorative sleep, when a favorable opportunity and
circumstances arise. It is considered a disorder when these
symptoms are present at least three times a week, for at least
1 month (Roth, 2007). As such, it is the most common sleep
disorder, but its prevalence varies depending on the definition
used and the population studied. The strictest diagnostic criteria
suggest a prevalence rate of around 5–7%, although insomnia
symptoms rise to nearly 30% (Roth, 2007).

Delayed sleep phase disorder refers to normal sleep (in terms
of quality and structure) that shows significantly delayed onset
and wake-up times, with respect to those externally imposed,
or desired by the patient according to standard schedules
(American Academy of Sleep Medicine, 2005; World Health
Organization [WHO], 2008). This also implies difficulties for
initiating sleep, as in the case of insomnia, as well as problems
for waking up early in the morning. The accomplishment
of standard wake times results in partial sleep deprivation,
which in turn deteriorates daytime performance (Gradisar and
Crowley, 2013). Studies on the general population yielded
prevalence rates of between 0.13 and 0.17% (Schrader et al.,
1993; Yazaki et al., 1999), but when focusing on adolescence,
prevalence increases to 16% (Lovato et al., 2013). Nevertheless,
all estimations until now are uncertain, since this disorder
is likely underestimated (Gradisar et al., 2011) and probably
confounded with OI (Weitzman et al., 1981). Thus, tools are
needed that allow their differentiation, in order to select the most
appropriate interventions.

Prediction and classification methods based on machine
learning are rapidly expanding as diagnostic tools for a
wide spectrum of pathologies (Kubota et al., 2016; Dagliati
et al., 2017; Duda et al., 2017; Kim et al., 2017; Mossotto
et al., 2017; Serrano et al., 2017). The aim of this field of
computational sciences is to develop algorithms capable of
detecting predictable patterns in complex data samples. In
general terms, supervised machine learning permits classification
when the output is a label or nominal value, and prediction
when the output is a numeric value. In this study, we used
a classification model known as decision tree: a top-down
classification algorithm that splits data into hierarchical nested
classes, by selecting the variable in each step that better
subdivides the sample (Rokach and Maimon, 2005). Comparing
the classification obtained with an expert criterion (in this
case, the initial categories of pathologies) allows estimating
both the sensitivity and specificity of the generated model
(Kubota et al., 2016).

Thus, the aim of this study was to assess the usefulness of
machine learning methods to differentially diagnosis PI from
DSPD using the circadian rhythms of wrist temperature, motor
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activity, body position, and exposure to environmental light,
recorded by a ACM device.

MATERIALS AND METHODS

Participants
A total of 242 patients suffering from either PI (n = 184) or
DSPD (58), and 19 healthy control subjects were included in this
study. Patients and healthy controls were retrospectively selected
from the Circadian Health Database of the Chronobiology
Laboratory at the University of Murcia1. Chronobiological and
sleep parameters from subjects attendants to Dr. Estivill Sleep
Clinic (Barcelona, Spain) were anonymously analyzed and coded
by the Kronowizard platform which was approved by the Ethics
Committee of the University of Murcia. All subjects gave written
informed consent before their diagnosis tests according to the
model provided in the Kronowizard platform. The selection
criteria for patients were: (1) having been diagnosed of either
PI or DSPD by sleep experts from the above mentioned sleep
clinic, (2) including ACM as part of routine clinical diagnosis
and treatment of sleep and circadian disorders, (3) not being
diagnosed of any other primary circadian or sleep disorders
(discarded by PSG). The available information from the database
did not differentiate between onset, maintenance, or terminal
insomnia. The selection criterion for healthy controls was not
being diagnosed of any sleep or circadian disorder. Exclusion
criteria for both patients and healthy controls were any organic,
metabolic, endocrine, or psychiatric disorder, so as the abuse of
alcohol or illicit drugs.

Clinical Interview
The diagnostic classification was based on the clinical history.
To this end, patients were interviewed about the nature of
their complaints, including questions aimed at addressing the
following aspects:

– Whether the problem referred to sleep onset, maintenance,
non-restorative sleep, or a combination of these.

– Duration, frequency, and severity of the symptoms.
– Daytime functioning and associated symptoms.
– Other possible symptoms (snoring, apnea, nocturia,

parasomnias, symptoms associated with other disorders,
such as restless legs syndrome, periodic limb movement
disorder, etc.).

– Sleep–wake habits: work, school, food and social
schedules, physical activity, use of technological devices
at night, naps during daytime, caffeine intake, routines
before bedtime, etc.

– Sleep conditions and routines: conditions of the bedroom
(light, noise, etc.), whether the patient sleeps alone or
with someone else (and, in this case, possible disturbances
from the bedmate), the presence and use of technological
devices once in bed (TV, computer/laptop, light-emitting
e-books, radio, etc.).

1https://kronowizard.um.es/kronowizard/inicio.seam

– Time preferences for sleep onset, wakeup,
activities schedule, etc.

– Intake of psychoactive substances (alcohol, stimulating or
relaxing substances, legal drugs, illicit drugs, etc.).

Ambulatory Circadian Monitoring Device
The multichannel device Kronowise R© (Chronobiology
Laboratory, University of Murcia, Murcia, Spain) employed to
evaluate the circadian rhythms of the selected sample integrates
several sensors: (1) The Thermochron R© iButtonDS1921H data
logger (Dallas, Maxim), placed on the skin of the non-dominant
wrist, assesses distal temperature every 10 min; (2) an actimeter
(Hobo R© Pendant G Acceleration Data Logger), placed on the
non-dominant arm, records body position as the tilt (◦) of
the vertical axis parallel to the arm (axis X, Figure 1) and
motor activity as its acceleration (m/seg2), every 30 s; and (3)
a luxometer (Hobo R© Pendant Light-Temperature Data Logger)
registers environmental light (in luxes) every 30 s. All subjects
wore this equipment 24 h a day for a week, including work
and non-work days, under normal-living conditions as already
described (Refinetti et al., 2013; Martinez-Nicolas et al., 2019).
During the registration period, participants were instructed to
follow their usual lifestyle: since sleep assessment was performed
within a clinical context, the ACM study was intended to be
conducted in conditions as faithful as possible to their normal
living at the moment of their complaints.

Data Analysis
Non-parametric Analysis
The integrated variable TAP was calculated for each subject,
from his/her rhythms of skin temperature, motor activity,
and body position, as described in Ortiz-Tudela et al. (2010).
To this end, the values of skin temperature were normalized
between 0 and 1 using the 5th and 95th percentile and
inverted; the values of motor activity were normalized with
respect to the actimeter placement. Normalized activity values
ranged from 0 (total immobility) to 1 (percentile 95th, used
as maximal acceleration reference). Arm position was also

FIGURE 1 | Schematic arrangement of the ambulatory circadian monitoring
device Kronowise R©, composed of a luxometer and a temperature data logger
placed on the wrist, and an accelerometer placed on the arm (Chronobiology
Laboratory, University of Murcia).
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normalized between 0 (horizontal) to 1 (vertical position). The
integrated variable TAP expressed the level of general activation
from 0 (minimal activation, high temperature, low activity,
and horizontal arm position) to 1 (maximal activation, low
temperature, high activity, and vertical arm position). This was
used to estimate sleep probability, from a threshold dynamically
established for each subject, depending on his/her own rhythms
(Ortiz-Tudela et al., 2010).

All these variables, including TAP and estimated sleep, were
subsequently subjected to non-parametric analyses (Madrid-
Navarro et al., 2019) using the software Circadianware R©

implemented in the website Kronowizard R©2 (Chronobiology
Laboratory, University of Murcia, Murcia, Spain), yielding the
following indexes:

• M10v and M5v, and L10v and L5v refer to the mean values
of 10 or 5 consecutive hours of maximal (M) and lowest
(L) values of the variable. M5v of temperature and L5v
of activity, position, and TAP have been used as indexes
of sleep depth, while L10v of temperature and M10v
of activity, position, and TAP indicate general activation
levels during wakefulness. The midpoint timing of these
periods (M10h and M5h, and L10h and L5h) was also
obtained and used as indexes of circadian phase.
• IS quantifies the repetitiveness of the rhythm across

consecutive days. It is obtained according to the following
formula:

IS =
n

∑n
h=1(x̄h − x̄)2

p
∑n

i=1(xi − x̄)2

n: total number of data,
p: number of data per day,
x̄: mean value of all the data,
x̄h: mean value of the data at a specific time of day,
IS ranges from 0 (maximum noise) to 1 (perfect IS, i.e.,
when the daily wave repeats exactly across days).

Intradaily variability indicates the rhythm fragmentation,
which depends on the frequency and extension of the
transitions between low and high values within the cycle,
according to the following formula:

IV =
n

∑n
i=2(xi − xi−1)

2

(n− 1)
∑n

i=1(xi − x̄)2

n: total number of data,
x̄: mean value of all the data.

Intradaily variability values are close to 0 in the case
of a perfect sinusoid wave, and approach 2 in the case
of Gaussian noise.

• Relative amplitude is a marker of the rhythm amplitude
or contrast between wakefulness and sleep values, i.e., the
difference between the maximum and minimum values,
according to the following formula for motor activity,
body position, TAP, and environmental light:

2https://kronowizard.um.es/

RA =
M10v− L5v
M10v+ L5v

As wrist temperature and estimated sleep show opposite
profiles, RA was calculated as follows:

RA =
M5v− L10v
L10v+ M5v

The RA for WT was multiplied by 10 in order to amplify
its values to range from 0 to 1. Values near 0 in this index
indicate null contrast between wakefulness and sleep, while
values near 1 express maximal contrast.
• The CFI was developed to characterize rhythm robustness

with a single score (Ortiz-Tudela et al., 2010). It integrates
normalized values between 0 and 1 for IS, IV, and RA,
with IV values being inverted. Accordingly, the CFI ranges
from 0 (null circadian rhythmicity) to 1 (maximally robust
circadian rhythm).

Machine Learning Analysis
All subjects included in our study were classified by machine
learning analysis, using a decision tree, performed on the indexes
described above. This analysis was carried out using the software
Orange Canvas© (Demšar et al., 2013).

Attribute selection
The selection of attributes for the classification model was
based on the TAP variable and sleep probability estimated
from it, due to its greater validity over the individual variables
(Ortiz-Tudela et al., 2010, 2014). Attribute selection was guided
by the expert criterion of including those indexes providing
complementary information to one another. Therefore, we
aimed to select indexes describing circadian phase and rhythm
and sleep quality.

With this in mind, the discriminative potential of the
candidate attributes was obtained according to the criterion of
information gain (based on entropy reduction) and the statistical
criteria of ANOVA (maximization of differences between classes)
and Chi-squared (maximization of internal correlation within
each class) measures.

Discretization
The selected attributes were reconverted from continuous to
discrete values, since classification models built on discrete
attributes are more exact than those built on continuous
ones (Demšar et al., 2013). Discretization was based on
data splits that met the criteria proposed by Maslove et al.
(2013) and Liu and Hussain (2002): (1) reflecting the original
distribution of the continuous attribute; (2) maintaining the
attribute patterns without adding additional spurious patterns;
and (3) making sense and being interpretable according to
expert criteria.

The discretization method used in our study was minimum
description length (MDL) (Fayyad and Irani, 1993). This is a top-
down technique that recursively splits the attribute maximizing
information gain to the point where a new split would not add
any new information to the predictions.
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Model validation
The model was evaluated through 10-fold cross-validation,
obtaining the following indexes:

• Sensitivity, true positive rate, or recall: probability of
correctly classifying a case. It is obtained according to this
formula:

Sensitivity =
TP

TP+ FN

TP: number of true positives,
FN: number of false negatives.

• Accuracy, predictive value: probability of a specific case
actually belonging to the class assigned by the model,
according to the following formula:

Accuracy =
TP

TP+ FP

TP: number of true positives,
FP: number of false positives.

• F1 score indicates sensitivity and accuracy together, as the
harmonic mean of the two, i.e.,

F1 = 2
Sensitivity x Accuracy
Sensitivity+ Accuracy

• Specificity or true negative rate is the probability of
correctly excluding a case from a class where it does not
belong, obtained as follows:

Specificity =
TN

TN+ FP

TN: number of true negatives,
FP: number of false positives.

• False positive rate: probability of erroneously assigning a
case to a class where it does not belong, calculated as:

False positives rate = 1− Specificity

• Receiver operating characteristic (ROC) curve and AUC: the
ROC curve is obtained from the graphic representation of
sensitivity and false positives rate together. The AUC is a
discriminating measure that indicates the capacity of the
model to discriminate values of different classes.

RESULTS

Non-parametric Analyses
The circadian markers obtained from ACM and the circadian
indexes obtained from non-parametric analyses for every original
class (i.e., diagnostic categories based on the clinical history
previous to machine learning classification) are summarized
in Table 1.

Attribute Selection
The attributes selected for building the decision tree classification
model, according to the criteria of information gain, ANOVA,
and Chi-squared were: TAP-L5h as sleep phase marker, TAP-
M10h as wakefulness phase marker, CFI of estimated sleep as
an indicator of global quality of the rhythm, and TAP-RA,
which apart from being an index for rhythm quality, provides
information relative to sleep depth and general activation during
wakefulness together. Table 2 shows the magnitudes of the
criteria used for each of the selected attributes.

Decision Tree
Subjects were classified as shown in Figure 2, based on the
attributes described above. The sleep phase marker TAP-L5h (a
marker of mid-sleep time) allows for discriminating between
pathologies characterized by sleep onset problems (TAP-L5h
later than 5:27 h) and the remaining classes. Subjects with
earlier TAP-L5h were then divided according to their TAP-
RA, i.e., the contrast between rest and activity period levels.
Those with lower TAP-RA (<0.629), classified by the model as
insomnia, could be considered as a MI subtype according to
its characteristics (explained below). Next, subjects with higher
levels of TAP-RA were divided according to their sleep-CFI.
This resulted in a group with higher scores (≥0.852), indicating
more robust rhythms; these were classified as healthy controls,
while a group with lower rhythm robustness, classified by the
model as insomnia, could be considered a mild type. On the
other hand, the group characterized by a delay in mid-sleep
time was subsequently divided according to their TAP-M10h,
i.e., the central time of maximal activation. This allowed for
differentiating between DSPD (TAP-M10h later than 16:07 h)
and a third group of insomnia (TAP-M10 earlier than 16:07 h)
compatible with an insomnia onset subtype. In summary, this
model generated five final classes: healthy controls, DSPD (with
both delayed mid-sleep and central time of maximal activation),
and three subtypes of insomnia, henceforth referred to as
OI (delayed mid-sleep time, but not central time of maximal
activation), MI (normal sleep phase and low RA and CFI), and
mild insomnia (which only differed from the controls in terms of
their sleep rhythm robustness).

Each class obtained by the decision tree was characterized by a
specific circadian profile (Figure 3). Healthy controls presented:
(a) deeper sleep: indicated by higher night wrist temperature
and sleep probability, and lower motor activity and TAP levels
during sleep, and (b) lower daytime temperature, pointing to
higher activation levels than the remaining classes. DSPD was
characterized by: (a) an evident delay of the nocturnal phase
of all variables; (b) low activation during the morning (high
temperature, low motor activity, and TAP); and (c) low levels
of environmental light during the morning, with no differences
with respect to the remaining classes from 17:00 to 23:00 h,
and prolonged exposure to environmental light during the night
(until 6:00 h, on average).

Figure 4, right panels, shows specific circadian profiles
of the different subtypes of insomnia yielded by the model,
labeled as onset, maintenance, or mild insomnia according
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TABLE 1 | Mean value (standard deviations in brackets) for every index obtained from non-parametric analysis for wrist temperature, motor activity, TAP, estimated sleep,
and environmental light.

Circadian marker/index Temperature Act TAP Sleep Light

L5v/M5v (◦C) Norm. (0–1) A.U. Probability Log(lux)

Control 34.92 (0.54) 0.04 (0.02) 0.13 (0.02) 0.95 (0.03) 0.01 (0.04)

Insomnia 34.54 (0.86) 0.06 (0.06) 0.18 (0.06) 0.9 (0.07) 0.03 (0.08)

DSPD 34.35 (0.87) 0.08 (0.07) 0.19 (0.06) 0.87 (0.09) 0.11 (0.19)

L5h/M5h hh:mm hh:mm hh:mm hh:mm hh:mm

Control 4 : 04 (0 : 51) 3 : 57 (0 : 36) 3 : 54 (0 : 42) 4 : 06 (0 : 22) 3 : 52 (0 : 38)

Insomnia 4 : 44 (4 : 24) 3 : 54 (1 : 14) 4 : 04 (1 : 56) 3 : 57 (1 : 10) 3 : 54 (2 : 26)

DSPD 7 : 21 (3 : 25) 6 : 43 (2 : 03) 6 : 48 (1 : 43) 6 : 37 (1 : 43) 6 : 08 (2 : 58)

M10v/L10v (◦C) Norm. (0–1) A.U. Probability Log(lux)

Control 32.04 (0.84) 0.70 (0.18) 0.63 (0.05) 0.01 (0.02) 1.81 (0.51)

Insomnia 32.46 (1.09) 0.63 (0.24) 0.59 (0.07) 0.05 (0.05) 1.64 (0.56)

DSPD 32.44 (1.26) 0.67 (0.22) 0.58 (0.07) 0.06 (0.07) 1.35 (0.46)

M10h/L10h hh:mm hh:mm hh:mm hh:mm hh:mm

Control 15 : 40 (1 : 39) 16 : 19 (1 : 32) 16 : 16 (1 : 04) 15 : 51 (1 : 54) 14 : 56 (1 : 40)

Insomnia 14 : 25 (2 : 37) 15 : 26 (1 : 56) 15 : 25 (1 : 47) 15 : 19 (1 : 52) 14 : 20 (1 : 41)

DSPD 18 : 01 (3 : 00) 17 : 45 (3 : 43) 18 : 07 (3 : 08) 17 : 05 (5 : 25) 16 : 03 (3 : 02)

RA (relative amplitude) (A.U. 0–1)

Control 0.43 (0.16) 0.69 (0.19) 0.66 (0.07) 0.98 (0.03) 0.99 (0.04)

Insomnia 0.31 (0.15) 0.66 (0.16) 0.53 (0.11) 0.89 (0.11) 0.96 (0.11)

DSPD 0.29 (0.17) 0.6 (0.16) 0.5 (0.13) 0.87 (0.13) 0.88 (0.18)

IS (interdaily stability) (A.U. 0–1)

Control 0.52 (0.13) 0.28 (0.04) 0.59 (0.08) 0.75 (0.06) 0.52 (0.1)

Insomnia 0.37 (0.19) 0.28 (0.08) 0.49 (0.12) 0.64 (0.12) 0.48 (0.15)

DSPD 0.32(0.19) 0.26 (0.12) 0.44 (0.16) 0.57 (0.15) 0.4 (0.16)

IV (intradaily variability) (A.U. 0–2)

Control 0.12 (0.05) 0.97 (0.08) 0.3 (0.07) 0.19 (0.05) 0.19 (0.06)

Insomnia 0.16 (0.08) 0.98 (0.09) 0.48 (0.17) 0.32 (0.1) 0.21 (0.15)

DSPD 0.15 (0.08) 1.01 (0.1) 0.48 (0.16) 0.3 (0.1) 0.2 (0.09)

CFI (circadian functioning index) (A.U. 0–1)

Control 0.5 (0.05) 0.54 (0.04) 0.7 (0.05) 0.88 (0.03) 0.8 (0.04)

Insomnia 0.44 (0.07) 0.51 (0.06) 0.59 (0.09) 0.79 (0.08) 0.78 (0.08)

DSPD 0.42 (0.07) 0.49 (0.08) 0.57 (0.11) 0.76 (0.1) 0.73 (0.1)

M5v/L5v corresponds to the mean values of the five consecutive hours of maximal (M) and lowest (L) values; M10v/L10v, mean values of the 10 consecutive hours of
maximal (M) and lowest (L) values; M5h/L5h is the midpoint timing of the five consecutive hours of maximal (M) and lowest (L) values; M10h/L10h, midpoint timing of the
10 consecutive hours of maximal (M) and lowest (L) values. DSPD, delayed sleep phase disorder. A.U. = arbitrary units.

to their characteristics. In consonance with the classification
model, OI differed from the maintenance and mild insomnia
by later sleep onset and wakeup times, while these two latter

TABLE 2 | Information gain, ANOVA F, and χ2 for every attribute selected for
building the decision tree (see Figure 1 for legend).

Attribute Information gain ANOVA (F) χ2

TAP-L5h 0.36 50.30 79.06

TAP-M10h 0.25 35.70 53.64

Sleep-CFI 0.13 12.83 25.59

TAP-RA 0.10 13.86 24.08

cases differed from each other in their TAP-RA. In the mild
subtype, TAP showed lower night levels (lower general activation
and, therefore, deeper sleep) and higher daytime levels (higher
diurnal activation). Figure 4, left panels, shows specific circadian
profiles of DSPD and OI. DSPD showed a sleep phase delay
when compared to OI and, importantly, a different pattern
of diurnal activation and exposure to light. In particular, OI
exhibited higher general activation during the morning and
more marked postprandial sleep propensity, while DSPD showed
higher activation during the evening and early hours of the night.
In addition, DSPD subjects were exposed to lower environmental
light during the morning than the OI group, and higher
levels after noon.
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FIGURE 2 | Decision tree and cut values used by the model to generate five final classes: DSPD (with both delayed mid-sleep and central time of maximal
activation), OI (delayed mid-sleep time, but not central time of maximal activation), MI (normal sleep phase and low relative amplitude and CFI), mild insomnia (which
only differed from the controls in terms of their sleep rhythm robustness), and healthy controls. TAP-L5h, midpoint timing of the five consecutive hours of lowest TAP
values; TAP-M10h, midpoint timing of the 10 consecutive hours of maximal TAP values; TAP-AR, relative amplitude of TAP rhythm; Sleep CFI, circadian function
index of sleep rhythm.

Model Validation
The model was evaluated through 10-fold cross-validation.
Table 3 shows the accuracy, sensitivity, specificity, F1 index,
and AUC of the model for each class, while false positive
rates are displayed on the ROC curve, together with sensitivity
(Figures 5A–C). This validation allowed for obtaining a
confusion matrix, the data for which are shown in Figure 5D.

DISCUSSION

The present study proposes a novel approach for clinically
detecting sleep disorders using circadian markers. To this end, we
evaluated the diagnostic potential of an ACM technique based on
the simultaneous assessment of wrist temperature, motor activity,
body position, and environmental light in a sample of patients
suffering from either insomnia or DSPD, and a control group
consisting of subjects without any circadian or sleep pathology.
The potential of this technique for differential diagnostic was
explored through machine learning analysis.

Machine learning methods are revolutionizing the field of
clinical research as a support for differential diagnosis. They
have recently been applied to widely different pathologies, such
as diabetes (Dagliati et al., 2017), autism and attention-deficit
hyperactivity disorder (ADHD) (Duda et al., 2017), glaucoma
(Kim et al., 2017), Parkinson’s disease (Kubota et al., 2016), and
pediatric inflammatory bowel disease (Mossotto et al., 2017).

To apply this technique in our study, we mainly based
our analysis on the integrated variable TAP, obtained from
wrist temperature, motor activity, and body position, since it
showed higher accuracy for estimating sleep than any of the
individual variables integrating it (Ortiz-Tudela et al., 2010,

2014). The circadian parameters of sleep estimated from TAP
were also considered. A decision tree was built from just four
of the indexes, calculated by non-parametric analyses (Refinetti
et al., 2013). They included a sleep phase marker (TAP-L5h),
a wakefulness phase marker (TAP-M10h), a global index of
circadian rhythms robustness (sleep CFI), and TAP-RA. Besides
quantifying the RA of the rhythms, which is a direct measure
of rhythms quality, TAP-RA indirectly yields information on
sleep depth and diurnal activation. Indeed, this index showed
more discriminative power in our sample than the sleep depth
estimators (TAP and motor activity L5v) themselves, probably
because information on daytime is also considered.

Apart from discriminating among the three original
categories, i.e., insomnia, DSPD, and healthy controls, the
decision tree yielded three different groups of insomnia, which
was likely facilitated by the large sample size and the consequent
variability of the original insomnia group. One of them was
characterized by a later mid-sleep time than the others, which
pointed to sleep onset difficulties. Therefore, this subtype
was labeled as OI. According to its late mid-sleep time, this
insomnia subgroup emerged from the same branch as DSPD.
The discrimination between these two pathologies thus relied
on their central time of maximal activation, which was later in
DSPD. This fits the expected circadian profile for DSPD, as it
can be considered to be the clinical manifestation of extreme
evening-types (Lack et al., 2009). In contrast, and according
to our results, this would not be the case for OI, since it is
not a circadian alteration. This finding is noteworthy, given
the overlapping symptoms of these two pathologies (Gradisar
and Crowley, 2013; Sivertsen et al., 2013; Richardson et al.,
2015), especially when the diagnosis is based only on interviews.
Our approach strongly supports the objective consideration of
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FIGURE 3 | Mean circadian waveforms for (A) wrist temperature, (B) motor activity, (C) environmental light, (D) TAP, and (E) estimated sleep probability of the three
main classes: healthy controls (purple), insomnia (red), and DSPD (green). Data are expressed as mean ± SEM.

sleep–wake patterns and highlights the relevance of taking into
account circadian rhythms when clinically evaluating sleep.

Interestingly, DSPD also differed from the other classes
(including OI) in terms of its exposure rhythm to environmental
light. In particular, it was characterized by null light exposure
during the early hours of the morning, together with light
exposure during a large part of the night. However, our model
does not yield any information about causal relationships. Thus,
we cannot infer whether their phase delay was partially a
consequence or a cause of their light exposure pattern, since
sleep–wake schedules modulate the light exposure schedules.
In any case, it seems clear that there is a feedback between
both factors and that this pattern of light exposure may
contribute to maintaining the sleep and circadian alteration
(Auger et al., 2011).

The subjects not showing delayed mid-sleep time were first
divided by the RA of their rhythms, yielding another insomnia
subgroup. This low contrast between sleep and wakefulness
activation is congruent with fractioned sleep and daytime
sleepiness. Therefore, this subgroup was considered to be
compatible with MI. Among the remaining subjects, i.e., those

with a high relative rhythm amplitude, another subgroup of
insomnia emerged, which barely differed from healthy controls.
The criterion used to differentiate between them was the
robustness of the sleep rhythm, but their circadian profile in
terms of the mean circadian waveforms was very similar. Thus,
this subgroup of insomnia most likely consists of patients with
low alteration, and it was therefore labeled as mild insomnia. It
is important to note that our labeling of the insomnia subgroups
was not meant as a diagnosis labeling, but as a characterization of
the different groups obtained.

The most relevant limitation of our study was the large
difference in the sample size of the initial categories and,
specifically, the small sample size of healthy controls. This was
due to the fact that participants were retrospectively selected
from a clinical database, thus subjects suffering sleep and/or
circadian disorders were more frequent than healthy controls.
Such disparity of sample sizes may affect the quality of the model,
as it would give more weight to the attributes that would better
discriminate among the classes with larger sample size (in our
case, insomnia), at the expense of the smaller classes, with the aim
of maximizing the number of true positives. The most evident
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FIGURE 4 | Mean circadian waveforms (from top to bottom) for TAP, estimated sleep, and exposure to environmental light rhythms, for insomnia subtypes (left) and
onset insomnia vs. DSPD (right). Data are expressed as mean ± SEM.

consequence of this limitation is the relatively high probability
of misclassifying healthy participants as insomnia, in comparison
with other groups. But this entails the risk of also increasing the
rate of false positives in the largest group. In other words, the
model would make decisions aimed at increasing sensitivity to
insomnia, at the expense of specificity. Indeed, according to our
results, the specificity for insomnia was the lowest, while it was
very high in the other two categories (>95% in the case of DSPD
and >99% in the case of the control group).

Despite this limitation, in general, our results showed high
rates of sensitivity, accuracy, and specificity, thus confirming that
our model was highly reliable for discriminating between the
pathologies studied. However, future studies should address this
limitation by applying this method to larger, and in particular,
more balanced samples.

Another limitation would be that, since the present study
follows a retrospective design, the device employed at the
time of the data collection would result a little bit old
fashioned nowadays. Nonetheless, it had previously shown
to be highly useful and accurate for assessing circadian
rhythms and sleep (Ortiz-Tudela et al., 2010, 2014). In fact,
currently our Chronobiology Laboratory has implemented
all temperature, motor activity, and environmental light

sensors in a unique device, more modern and sophisticated
that assesses simultaneously 15 different variables with a
sampling rate of 10 Hz (Madrid-Navarro et al., 2019). It has
been recently validated for Parkinson’s disease and allows
also an accurate detection of the light type, intensity, and
timing the subject is exposed under ambulatory conditions
(Arguelles-Prieto et al., 2019).

So far, the results of the present study can be highly useful
in clinical practice, since they permit a better characterization
of insomnia and DSPD. Furthermore, our results inspire further
research to address other classification models for various
disorders, such as obstructive sleep apnea/hypopnea (OSAH)
or advanced sleep phase disorder (ASPD). In addition, the
validation of the ACM technique also encourages its application
in research, as it would seem to be suitable for sample selection,

TABLE 3 | Indexes for model validation.

Class Accuracy Sensitivity Specificity F1 AUC

Control 0.96 0.962 0.995 0.667 0.851

Insomnia 0.884 0.885 0.714 0.921 0.897

DSPD 0.922 0.923 0.964 0.811 0.934
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FIGURE 5 | ROC curves for healthy controls (A), insomnia (B), and DSPD (C). (D) The graphical representation of the confusion matrix data, as a function of the
attributes TAP-RA (ranging from 0 to 1, Y-axis) and TAP-L5h (time of day, X-axis). Solid dots indicate true positives, and empty dots indicate false negatives. Cases
classified as DSPD (green dots) were characterized by later mid-sleep time (TAP-L5h) than the other classes, while their TAP-RA scored within a wide range.
Insomnia (red dots) exhibited a mid-sleep time between 3:00 and 5:00 h and, as in the case of DSPD, a wide range of TAP-RA scores. Healthy controls showed a
mid-sleep time primarily centered around 4:00 h and predominantly high values of TAP-RA (0.65–0.7).

evaluation, and even the monitoring of habits in order to
offer recommendations (e.g., on light exposure and a sedentary
lifestyle). The combination of wearable devices, which make it
possible to record millions of data points per subject, and the
development of methods based on massive data management and
data mining (e.g., machine learning methods) facilitate “digital
health,” providing new diagnostic tools and allowing personalized
therapies in broad population samples and at an affordable cost.
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